Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Ping Xiao

School of Chemistry and Materials Science Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.057$
Data-to-parameter ratio $=9.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Triaqua(2,2'-bipyridine)(2-sulfonatobenzoato)cobalt(II)

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$, the $\mathrm{Co}^{\text {II }}$ atom has a distorted octahedral geometry formed by three aqua O atoms, one carboxylate O atom from a 2 sulfonatobenzoate dianion and two N atoms of a $2,2^{\prime}$ bipyridine ligand. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the mononuclear units into a two-dimensional network structure.

Comment

Like other sulfobenzoic acids, such as 4-sulfobenzoic acid (Zhang et al., 2005) and 5-sulfoisophthalic acid (Li et al., 2005; Xiao \& Morsali, 2005; Yuan et al., 2004), which show diverse coordination modes, 2-sulfobenzoic acid ($o-\mathrm{H}_{2} \mathrm{sb}$) is also a versatile ligand and can function variously as a monodentate, bidentate or tridentate ligand; it can also bridge or chelate $(\mathrm{Li}$ \& Yang, 2004; Su et al., 2005; Xiao et al., 2005). Here, we present the title compound $\left[\mathrm{Co}\left(2,2^{\prime}\right.\right.$-bipy $\left.)(o-s b)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(2,2^{\prime}-\right.$ bipy is $2,2^{\prime}$-bipyridine), (I), in which the o-sb ${ }^{2-}$ dianion functions in a monodentate coordination mode.

(I)

In (I), the $\mathrm{Co}^{\mathrm{II}}$ atom is in a distorted octahedral environment formed by three aqua O atoms, one carboxylate O atom from an o-sb ${ }^{2-}$ dianion and two N atoms of a $2,2^{\prime}$-bipyridine ligand (Fig. 1 and Table 1). The o-sb ${ }^{2-}$ ligand coordinates to the $\mathrm{Co}^{\mathrm{II}}$ centre in a monodentate mode, as is the same as observed in the previously reported compound $\left[\mathrm{Mn}(\mathrm{phen})_{2^{-}}\right.$ $\left.(o-s b)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (phen is 1,10-phenanthroline; Xiao, 2005). The dihedral angle between the planes of the $o-\mathrm{sb}^{2-}$ ring and its carboxylate group is $59.7(1)^{\circ}$, which is comparable with that in $\left[\mathrm{Mn}(\text { phen })_{2}(o-s b)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and much larger than that in $\left[\mathrm{Ni}(o-\mathrm{sb})(\mathrm{bpe})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (Xiao et al., 2005). The dihedral angle between the $o-\mathrm{sb}^{2-}$ ring and the mean plane of the $2,2^{\prime}$-bipyridine rings is $50.6(2)^{\circ}$.

Received 7 November 2005 Accepted 8 December 2005 Online 14 December 2005

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The stability of the crystal structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). There are three intramolecular hydrogen bonds between the coordinated water molecule and the uncoordinated carboxylate O atom ($\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 2$), and between the coordinated water molecule and the uncoordinated sulfonate group ($\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3$ and $\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4$). Additional $\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2, \mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3$ and $\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 5$ intermolecular hydrogen bonds link neighbouring mononuclear units into a two-dimensional network structure (Fig. 2).

Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{mmol}, 0.047 \mathrm{~g})$ was added slowly to a solution (10 ml) of N, N-dimethylformamide containing $2,2^{\prime}$-bipyridine ($0.20 \mathrm{mmol}, 0.031 \mathrm{~g}$) and 2 -sulfobenzoic acid ($0.20 \mathrm{mmol}, 0.037 \mathrm{~g}$). Red crystals of (I) suitable for X-ray diffraction analysis were obtained on allowing the solution to stand at room temperature for about two months.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=469.32$
Monoclinic, Pc
$a=7.4546$ (7) A
$b=12.3272$ (11) \AA
$c=10.5333$ (9) A
$\beta=90.142$ (11) ${ }^{\circ}$
$V=967.95$ (15) \AA^{3}
$Z=2$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.731, T_{\text {max }}=0.843$
5336 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.07$
2602 reflections
262 parameters
H-atom parameters constrained
$D_{x}=1.610 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1079 reflections
$\theta=2.5-25.2^{\circ}$
$\mu=1.04 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, red
$0.32 \times 0.25 \times 0.17 \mathrm{~mm}$

2602 independent reflections
2565 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-15 \rightarrow 15$
$l=-12 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0228 P)^{2}\right. \\
& +0.0468 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1897 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.015 \text { (10) }
\end{aligned}
$$

Figure 2
A view of the two-dimensional network structure formed by hydrogen bonding interactions (shown as dashed lines). For clarity, the 2,2'bipyridine ligands have been omitted.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 7$	$2.085(2)$	$\mathrm{Co} 1-\mathrm{O} 8$	$2.112(2)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.092(2)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.115(2)$
$\mathrm{Co} 1-\mathrm{O} 6$	$2.094(2)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.118(2)$
O7-Co1-O1	$90.00(8)$	$\mathrm{O} 6-\mathrm{Co} 1-\mathrm{N} 1$	$94.57(8)$
$\mathrm{O} 7-\mathrm{Co} 1-\mathrm{O} 6$	$88.49(8)$	$\mathrm{O} 8-\mathrm{Co} 1-\mathrm{N} 1$	$95.25(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 6$	$80.58(7)$	$\mathrm{O} 7-\mathrm{Co} 1-\mathrm{N} 2$	$171.44(9)$
$\mathrm{O} 7-\mathrm{Co} 1-\mathrm{O} 8$	$90.41(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$98.51(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 8$	$89.66(7)$	O	$\mathrm{O}-\mathrm{Co} 1-\mathrm{N} 2$
O6-Co1-O8	$170.18(8)$	$\mathrm{O} 8-\mathrm{Co} 1-\mathrm{N} 2$	$92.05(8)$
O7-Co1-N1	$94.23(8)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$90.49(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$173.49(7)$		$77.21(8)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 2$	0.82	2.02	2.780 (3)	155
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3^{\text {i }}$	0.82	2.08	2.873 (3)	164
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.82	1.90	2.717 (3)	178
$\mathrm{O} 7-\mathrm{H} 7 A^{\cdots} \mathrm{O} 3$	0.82	1.89	2.692 (3)	167
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.93	2.741 (3)	173
O6-H6A \cdots O 4	0.82	2.03	2.842 (3)	172

Symmetry codes: (i) $x,-y+2, z-\frac{1}{2}$; (ii) $x+1, y, z$.
Water H atoms were located in a difference map and refined with the distance restraint $\mathrm{O}-\mathrm{H}=0.82(1) \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

metal-organic papers

The author acknowledges financial support from Zhejiang Provincial Natural Science Foundation (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Li, X.-H., Xiao, H.-P., Zhang, Q. \& Hu, M.-L. (2005). Acta Cryst. C61, m130m132.
Li, X.-H. \& Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Su, W., Bi, W.-H., Li, X. \& Cao, R. (2005). Acta Cryst. C61, m16-m18.
Xiao, H.-P. (2005). Acta Cryst. E61, m942-m944.
Xiao, H.-P., Li, X.-H. \& Hu, M.-L. (2005). Acta Cryst. E61, m506-m508.
Xiao, H.-P. \& Morsali, A. (2005). Helv. Chim. Acta, 88, 2543-2549.
Yuan, Y.-P., Mao, J. G. \& Song, J. L. (2004). J. Solid State Chem. 177, 922-927.
Zhang, L.-P., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m860-m862.

