Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Ping Xiao

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.057 Data-to-parameter ratio = 9.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triaqua(2,2'-bipyridine)(2-sulfonatobenzoato)cobalt(II)

In the title compound, $[Co(C_7H_4O_5S)(C_{10}H_8N_2)(H_2O)_3]$, the Co^{II} atom has a distorted octahedral geometry formed by three aqua O atoms, one carboxylate O atom from a 2-sulfonatobenzoate dianion and two N atoms of a 2,2'-bipyridine ligand. Intermolecular $O-H\cdots O$ hydrogen bonds link the mononuclear units into a two-dimensional network structure.

Received 7 November 2005 Accepted 8 December 2005 Online 14 December 2005

Comment

Like other sulfobenzoic acids, such as 4-sulfobenzoic acid (Zhang *et al.*, 2005) and 5-sulfoisophthalic acid (Li *et al.*, 2005; Xiao & Morsali, 2005; Yuan *et al.*, 2004), which show diverse coordination modes, 2-sulfobenzoic acid (o-H₂sb) is also a versatile ligand and can function variously as a monodentate, bidentate or tridentate ligand; it can also bridge or chelate (Li & Yang, 2004; Su *et al.*, 2005; Xiao *et al.*, 2005). Here, we present the title compound [Co(2,2'-bipy)(o-sb)(H₂O)₃] (2,2'-bipy is 2,2'-bipyridine), (I), in which the o-sb²⁻ dianion functions in a monodentate coordination mode.

In (I), the Co^{II} atom is in a distorted octahedral environment formed by three aqua O atoms, one carboxylate O atom from an *o*-sb²⁻ dianion and two N atoms of a 2,2'-bipyridine ligand (Fig. 1 and Table 1). The *o*-sb²⁻ ligand coordinates to the Co^{II} centre in a monodentate mode, as is the same as observed in the previously reported compound [Mn(phen)₂-(*o*-sb)(H₂O)]·3H₂O (phen is 1,10-phenanthroline; Xiao, 2005). The dihedral angle between the planes of the *o*-sb²⁻ ring and its carboxylate group is 59.7 (1)°, which is comparable with that in [Mn(phen)₂(*o*-sb)(H₂O)]·3H₂O and much larger than that in [Ni(*o*-sb)(bpe)(H₂O)]·0.25H₂O (Xiao *et al.*, 2005). The dihedral angle between the *o*-sb²⁻ ring and the mean plane of the 2,2'-bipyridine rings is 50.6 (2)°.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The stability of the crystal structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). There are three intramolecular hydrogen bonds between the coordinated water molecule and the uncoordinated carboxylate O atom (O8–H8B···O2), and between the coordinated water molecule and the uncoordinated sulfonate group (O7–H7A···O3 and O6–H6A···O4). Additional O6–H6B···O2, O8–H8A···O3 and O7–H7B···O5 intermolecular hydrogen bonds link neighbouring mononuclear units into a two-dimensional network structure (Fig. 2).

Experimental

An aqueous solution (10 ml) of $CoCl_2 \cdot 6H_2O$ (0.20 mmol, 0.047 g) was added slowly to a solution (10 ml) of *N*,*N*-dimethylformamide containing 2,2'-bipyridine (0.20 mmol, 0.031 g) and 2-sulfobenzoic acid (0.20 mmol, 0.037 g). Red crystals of (I) suitable for X-ray diffraction analysis were obtained on allowing the solution to stand at room temperature for about two months.

Crystal data

$\begin{bmatrix} \text{Co}(\text{C}_{7}\text{H}_{4}\text{O}_{5}\text{S})(\text{C}_{10}\text{H}_{8}\text{N}_{2})(\text{H}_{2}\text{O})_{3} \end{bmatrix}$ $M_{r} = 469.32$ Monoclinic, Pc a = 7.4546 (7) Å b = 12.3272 (11) Å c = 10.5333 (9) Å $\beta = 90.142$ (11)° V = 967.95 (15) Å ³ Z = 2	$D_x = 1.610 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 1079 reflections $\theta = 2.5-25.2^{\circ}$ $\mu = 1.04 \text{ mm}^{-1}$ T = 298 (2) K Block, red $0.32 \times 0.25 \times 0.17 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.731, T_{\max} = 0.843$ 5336 measured reflections	2602 independent reflections 2565 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 26.0^{\circ}$ $h = -8 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -12 \rightarrow 10$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.057$ S = 1.07 2602 reflections 262 parameters H-atom parameters constrained	$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0228P)^2 \\ &+ 0.0468P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.21 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.24 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ \text{with 1897 Friedel pairs} \end{split}$

Figure 2

A view of the two-dimensional network structure formed by hydrogen bonding interactions (shown as dashed lines). For clarity, the 2,2'bipyridine ligands have been omitted.

Table 1

Selected geometric parameters (Å, °).

Co1-07	2.085 (2)	Co1-O8	2.112 (2)
Co1-O1	2.092 (2)	Co1-N1	2.115 (2)
Co1-O6	2.094 (2)	Co1-N2	2.118 (2)
O7-Co1-O1	90.00 (8)	O6-Co1-N1	94.57 (8)
O7-Co1-O6	88.49 (8)	O8-Co1-N1	95.25 (8)
O1-Co1-O6	80.58 (7)	O7-Co1-N2	171.44 (9)
O7-Co1-O8	90.41 (8)	O1-Co1-N2	98.51 (8)
O1-Co1-O8	89.66 (7)	O6-Co1-N2	92.05 (8)
O6-Co1-O8	170.18 (8)	O8-Co1-N2	90.49 (8)
O7-Co1-N1	94.23 (8)	N1-Co1-N2	77.21 (8)
O1-Co1-N1	173.49 (7)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D - H \cdots A}$	<i>D</i> _H	HA	$D \cdots A$	D_H4	
	D-II	11	$D \sim 11$	$D = \Pi^{*} \oplus \Pi^{*}$	
O8−H8 <i>B</i> ···O2	0.82	2.02	2.780 (3)	155	
$O8-H8A\cdots O3^{i}$	0.82	2.08	2.873 (3)	164	
$O7 - H7B \cdot \cdot \cdot O5^{i}$	0.82	1.90	2.717 (3)	178	
$O7 - H7A \cdots O3$	0.82	1.89	2.692 (3)	167	
$O6-H6B\cdots O2^{ii}$	0.82	1.93	2.741 (3)	173	
$O6-H6A\cdots O4$	0.82	2.03	2.842 (3)	172	

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) x + 1, y, z.

Water H atoms were located in a difference map and refined with the distance restraint O-H = 0.82 (1) Å and with $U_{\rm iso}({\rm H})$ = $1.5U_{\rm eq}({\rm O})$. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

Flack parameter: 0.015 (10)

The author acknowledges financial support from Zhejiang Provincial Natural Science Foundation (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Li, X.-H., Xiao, H.-P., Zhang, Q. & Hu, M.-L. (2005). Acta Cryst. C61, m130-m132.
- Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, W., Bi, W.-H., Li, X. & Cao, R. (2005). *Acta Cryst.* C61, m16–m18. Xiao, H.-P. (2005). *Acta Cryst.* E61, m942–m944.
- Xiao, H.-P., Li, X.-H. & Hu, M.-L. (2005). Acta Cryst. E**61**, m506–m508.
- Xiao, H.-P. & Morsali, A. (2005). *Helv. Chim. Acta*, **88**, 2543–2549.
- Yuan, Y.-P., Mao, J. G. & Song, J. L. (2004). J. Solid State Chem. 177, 922–927.
- Zhang, L.-P., Zhu, L.-G. & Xiao, H.-P. (2005). Acta Cryst. E61, m860-m862.